

# Χαρακτηρισμός των εναποθέσεων ασβεστίου σε πειραματική στένωση αορτικής βαλβίδας σε κονίκλους.

M. Karnachoriti<sup>1\*</sup>, Nikolaos Anousakis-Vlachochristou<sup>2,3\*</sup>, Dimitra Athanasiadou<sup>4</sup>, Nikos Boukos<sup>5</sup>, Konstantinos Lekkos<sup>3</sup>, Konstantinos Toutouzas<sup>2</sup>, Manolis Mavroidis<sup>3</sup> and A. G. Kontos<sup>1</sup>

\*Equal contribution

<sup>1</sup>Physics Department, National Technical University of Athens, 15780 Athens, Greece;

<sup>2</sup>National & Kapodistrian University of Athens Medical School, First Department of Cardiology, Athens, Greece;

<sup>3</sup>Academy of Athens Biomedical Research Foundation, Center for Basic Research, Athens, Greece;

<sup>4</sup>Department of Physics, Chalmers University of Technology, Gothenburg, Sweden;

<sup>5</sup>Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", GR15310 Athens, Greece.

Διοργανωτές ΕΛΕΝΕΠΕΥ Εληγικά Επορία Ναντικνολογίας στις Επιστήμιας Υγείας



## 1. Εισαγωγή-Σκοπός



<mark>1ο Πανελλήνιο Συνέδριο Φυσικών Επιστημών στην Υγεία: Καινοτομίες και Προοπτικές</mark> 22-23 Σεπτεμβρίου 2023

Η Στένωση αορτικής βαλβίδας εκφυλιστικής αιτιολογίας είναι η πιο κοινή βαλβιδοπάθεια με υψηλή θνησιμότητα. Ωστόσο δεν έχουν διερευνηθεί επαρκώς οι παθοφυσιολογικές διεργασίες στα πρώιμα στάδια. Σκοπός αυτής της εργασίας είναι ο χαρακτηρισμός των εναποθέσεων ασβεστίου σε πειραματική στένωση αορτικής βαλβίδας.<sup>[1]</sup>

# 2. Μέθοδοι και Υλικά



#### ΔΕΙΓΜΑΤΑ:

Προκλήθηκε στένωση αορτικής βαλβίδας σε κονίκλους New Zealand χορηγώντας τροφή εμπλουτισμένη με 1% χοληστερόλη και 3.500 I.U.s. εργοκαλσιφερόλης/kg ημερησίως για 7 εβδομάδες.



- Για την φασματοσκοπία Raman χρησιμοποιήθηκαν κρυοτομές βαλβίδων 2 mm επί υποστρωμάτων ανοξείδωτου χάλυβα.
- Για την φασματοσκοπία υπερύθρου χρησιμοποιήθηκαν λεπτές τομές μονιμοποιημένες με φορμαλίνη 4% και ακολούθως αιθανόλη 70%.
- Για την ηλεκτρονική μικροσκοπία έγινε μονιμοποίηση με OsO4, έγκλειση σε ρητίνη και μικροτόμηση.

### ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ:



Τα δείγματα μελετήθηκαν τόσο φασματοσκοπικά όσο και με τεχνικές μικροσκοπίας:

### 1.Φασματοσκοπία micro- Raman

Renishaw Invia Spectrometer, 785 nm

### 2. Φασματοσκοπία FT-IR

Cary 630 FTIR Spectrometer, Agilent, resolution: 2 cm<sup>-1</sup>

## 3. Ηλεκτρονική μικροσκοπία S/TEM & EDX

Talos F200i



# Φασματοσκοπία micro- Raman

Λήφθηκαν φάσματα Raman από δείγματα φυσιολογικών ιστών (Control: μπλε διάγραμμα) και από δείγματα με στένωση αορτικής βαλβίδας (ΑΣ: κόκκινο διάγραμμα). Τα φάσματα Raman αποτυπώνουν τις δονήσεις των μορίων που συντελούν τους ιστούς.

Φάσματα Control:

- Πλούσιο σε τρόπους Raman που προέρχονται κυρίως από λιπίδια, πρωτεΐνες και αμινοξέα.
- Χαρακτηριστικές κορυφές του φάσματος αυτές της προλίνης (855 cm<sup>-1</sup>) και της ελαστίνης (1102 cm<sup>-1</sup>)

#### Φάσματα στένωσης:

- Σημαντικές διαφορές από το φασματικό προφίλ των controls κυρίως λόγω εμφάνισης νέων κορυφών.
- Οι κορυφές στις συχνότητες the 426, 606, 958 and 1085 cm<sup>-1</sup> υποδηλώνουν την ύπαρξη των ανθρακικών απατίτων.<sup>[2]</sup>
- Οι κορυφές στις συχνότητες 743 and **1037** cm<sup>-1</sup> προέρχονται από πυροφωσφορικό ασβέστιο.<sup>[3]</sup>





# Φασματοσκοπία micro- Raman

- Τα φάσματα στένωσης ξεχωρίζουν κυρίως από τις ζώνες Raman ανθρακικών απατίτων και πυροφωσφορικού ασβεστίου σε χαμηλές συχνότητες κάτω από τα 1200 cm<sup>-1</sup>.
- Ωστόσο το φασματικό τους προφίλ αλλά και η ύπαρξη κορυφών όπως αυτή της δόνησης της χοληστερόλης στα 700 cm<sup>-1</sup> και των η χαρακτηριστική κορυφή των λιπιδίων στα 2855 cm<sup>-1</sup>, φανερώνουν την έντονη ύπαρξη λιπώδους ιστού στα δείγματα της στένωσης.<sup>[4]</sup>





1ο Πανελλήνιο Συνέδριο Φυσικών Επιστημών στην Υγεία: Καινοτομίες και Προοπτικές 22-23 Σεπτεμβρίου 2023

# Χαρτογράφηση επιφάνειας με micro- Raman

Οι πιο ισχυρές κορυφές του φάσματος στένωσης (958 cm<sup>-1</sup>, v<sub>1</sub> (PO<sub>4</sub> <sup>3-</sup>) υδροξυαπατίτης & 1037 cm<sup>-1</sup>, v<sub>s</sub> (PO<sub>3</sub>), πυροφωσφορικό ασβέστιο) χρησιμοποιήθηκαν για την χαρτογράφηση με φασματοσκοπία Raman της επιφάνειας του δείγματος.

- Ανάγλυφα τμήματα της επιφάνειας του ιστού φαίνεται να παρουσιάζουν υψηλότερες εντάσεις των αντίστοιχων
  ζωνών (φωτεινό μπλε→ ισχυρό σήμα Raman/ σκοτεινό χρώμα→ χαμηλό σήμα).
- Η φασματοσκοπική χαρτογράφηση των ιστών με στένωση απέδειξε την ύπαρξη όζων φωσφορικού ασβεστίου στην επιφάνεια του ιστού



![](_page_6_Picture_1.jpeg)

# Φασματοσκοπία FT-IR

Λήφθηκαν φάσματα FT-IR από δείγματα φυσιολογικών ιστών (Control: μπλε διάγραμμα) και από δείγματα με στένωση αορτικής βαλβίδας (ΑΣ: κόκκινο διάγραμμα).

- Έντονα διακριτό το φάσμα της βαλβίδας με στένωση σε σύγκριση με το control.
- Ισχυρότερες διαφορές στις θέσεις:
  - a. 1100 cm<sup>-1</sup> → V<sub>3</sub>(PO<sub>4</sub>) :PO δόνηση
  - b. 1760 cm<sup>-1</sup> → ν(CO) δόνηση λιπιδίων / νουκλεϊκών οξέων
  - c. 2850 cm<sup>-1</sup> → ν<sub>sym</sub>(CH<sub>3</sub>) δόνηση λιπιδίων & ν(CH<sub>2</sub>) νουκλεϊκών οξέων
  - d. 2930 cm<sup>-1</sup> → ν<sub>asym</sub>(CH<sub>2</sub>) δόνηση λιπιδίων
    /υδατανθράκων & ν(CH<sub>2</sub>) νουκλεϊκών οξέων

![](_page_6_Figure_10.jpeg)

![](_page_6_Figure_11.jpeg)

![](_page_7_Picture_1.jpeg)

1ο Πανελλήνιο Συνέδριο Φυσικών Επιστημών στην Υγεία: Καινοτομίες και Προοπτικές 22-23 Σεπτεμβρίου 2023

# Ηλεκτρονική Μικροσκοπία S/TEM & EDX

#### SEM-EDX

(Ηλεκτρονική Μικροσκοπία Σάρωσης με στοιχειακή ανάλυση) TEM - EDX analysis (Ηλεκτρονική Μικροσκοπία Διερχόμενης Δέσμης με στοιχειακή ανάλυση )

Σφαιρικά σωματίδια φωσφορικού ασβεστίου στις πειραματικές βαλβίδες.

![](_page_7_Picture_8.jpeg)

![](_page_7_Picture_9.jpeg)

![](_page_7_Picture_10.jpeg)

![](_page_7_Picture_11.jpeg)

![](_page_7_Figure_12.jpeg)

## 4. Συμπεράσματα

![](_page_8_Picture_1.jpeg)

- Οι δονητικές φασματοσκοπίες, Raman και FT-IR εντοπίζουν με επιτυχία τις εναποθέσεις ασβεστίου στις βαλβίδες κονίκλων με πειραματική στένωση αορτικής βαλβίδας.
- ✓ Οι δονήσεις του φωσφορικό ιόντος (PO₄<sup>3-</sup>) δίνουν ισχυρά σήματα Raman με χαρακτηριστικές τις ζώνες στις συχνότητες 958 και 1037 cm<sup>-1</sup> που αντιστοιχούν στον υδροξυαπατίτη και το πυροφωσφορικό ασβέστιο, αντίστοιχα.
- Η χαρτογράφηση Raman εντοπίζει με ακρίβεια τα όρια των όζων φωσφορικού ασβεστίου που εναποτίθενται στην επιφάνεια του ιστού.
- Περεταίρω μελέτη απαιτείται για την σύγκριση των φασμάτων των δειγμάτων στένωσης σε περιοχές πέραν των όζων. Η μέχρι τώρα φασματοσκοπική μελέτη δείχνει ότι υπάρχει προοπτική εύρεσης διαφορών που σχετίζονται με τις ζώνες λιπιδίων και κολλαγόνου.
- Μελλοντικό αλλά και άμεσο στόχο επίσης αποτελεί η εύρεση φασματικών χαρακτηριστικών σε δείγματα που βρίσκονται σε πρώιμο στάδιο της νόσου (2 εβδομάδες παρέμβασης).

# 5. Βιβλιογραφία

![](_page_9_Picture_1.jpeg)

[1] Nikolaos Anousakis-Vlachochristou et al., Focusing on the Native Matrix Proteins in Calcific Aortic Valve Stenosis. JACC: Basic to Translational Science, 2023. <u>https://doi.org/10.1016/j.jacbts.2023.01.009</u>

[2] Guillaume Penel et al., Raman Microspectrometry Studies of Calcified Tissues and Related Biomaterials. Raman Studies of Calcium Phosphate Biomaterials. Dent. Med. Probl. 2003, 40, 1, 37–43.

[3] Pierre Gras et al., Synthesis and Characterisation of Hydrated Calcium Pyrophosphate Phases of Biological Interest. European Journal of Inorganic Chemistry, 2013, 2013 (34), pp.5886-5895. 10.1002/ejic.201300955. hal-03467238

[4] Krzysztof Czamara et al., Raman microspectroscopy of human aortic valves: investigation of local and global biochemical changes associated with calcification in the aortic stenosis. Analyst 2012. DOI: 10.1039/C4AN01856G